Skip to main content

GSAT-9 heralds cost-saving electric propulsion


Test feature in May 5 missions is a tool to cut fuel load & space launch costs
This week's space mission, GSAT-9 or the South Asia Satellite, will carry a new feature that will eventually make advanced Indian spacecraft far lighter. It will even lower the cost of launches tangibly in the near future.
The 2,195-kg GSAT-9, due to take off on a GSLV rocket on May 5, carries an electric propulsion or EP system. The hardware is a first on an Indian spacecraft.
M.Annadurai, Director of the ISRO Satellite Centre, Bengaluru, explained its immediate and potential benefits: the satellite will be flying with around 80 kg of chemical fuel - or just about 25% of what it would have otherwise carried. Managing it for more than a decade in orbit will become cost efficient.
In the long run, with the crucial weight factor coming down later even for sophisticated satellites, Indian Space Research Organisation can launch them on its upcoming heavy rockets instead of sending them to space on costly foreign boosters. Shortly, its own vehicle GSLV MkIII is due for its full test flight.
Dr. Annadurai told The Hindu that GSAT-9's EPS would be used to keep its functions going when it reaches its final slot - which is roughly about two weeks after launch - and throughout its lifetime.
Normally the 2,000-kg class INSAT/GSAT communication satellites take 200-300 kg of chemical propellants with them to space. The fuel is needed to keep them working in space, 36,000 km away, for 12 to 15 years.
Dr. Annadurai said, "In this mission, we are trying EPS in a small way as a technology demonstrator. Now we have put a xenon-based EP primarily for in-orbit functions of the spacecraft. In the long run, it will be very efficient in correcting the [initial] transfer orbit after launch."
He said that the space agency normally uses up 25-30 kg of fuel on the satellite each year to maintain its functions and orbit position. An EP system would vastly bring this amount down.
Next big trend
A xenon based EPS can be five to six times more efficient than chemical-based propulsion on spacecraft and has many uses, according to Dr Annadurai, whose centre assembles all Indian spacecraft. A 3,500-kg EPS-based satellite, for example, can do the work of a conventional spacecraft weighing 5,000 kg, but cost far less.
"One day, we should be able to launch a 5-tonne equivalent spacecraft - but weighing less than it - on our own GSLV [MkIII.] We are not yet there," he said.
All this is on the way, may be in around three years. GSAT-20 is planned as the first fully EPS-enabled satellite; its features were not immediately available. ISAC and the Kerala-based Liquid Propulsion Systems Centre are lead centres in developing it.

A trend that started about four years back, EPS is expected to drive half of all new spacecraft by 2020. For Space-dependent sectors across the globe, the economic benefits of EP systems are said to be immense. Currently government-owned and private space players agencies are said to be scrambling to make space missions 30 per cent cheaper than now - by lowering the per-kg cost of lifting payloads to specific distances.
A satellite's orientation can be maintained by momentum wheels supplemented by magnetic torques and thrusters. Ion propulsion systems, are being used increasingly for station-keeping. For the first time, ISRO, had used electric propulsion for its GSAT-4 satellite. 2 indigenously developed and 2 imported SPT (stationary plasma thruster) has flown on board GSAT-4 to cater for "North South" station keeping operations. Since less than 5 m/s per year delta velocity needs to be imparted for east–west station keeping (EWSK), EPS system usage is not advantageous for EWSK, as overheads will negate the benefits. Similarly, use of EPS systems for orbit raising involves months of continuous operation and a very long wait to reach GSO, nullifying the advantage. However, this could be a backup option for conventional chemical propulsion.

          Electric propulsion (EP) offers a cost effective and sound engineering solution for space applications. Use of high performance electric propulsion system (EPS) will result into reduced chemical propellant and tankage requirements, in exchange for significant usage of power. Chemical rocket engines, like those on the lower stages of GSLV and PSLV, work by burning two gases to create heat, which causes the gases to expand and exit the engine through a nozzle. These exiting gases produce thrust which lifts the rocket. Instead of relying only on the energy stored in the propellants, if we add external energy using electricity, we can increase the temperature of the gases and thus create more thrust per pound of fuel. This is the basic concept of an electric propulsion or EP. EP provides much lower thrust compared to a chemical rockets but they provide very high specific impulse. This in effect means that though EP must burn for longer durations compared to a chemical rocket to achieve desired thrust, it consumes very less fuel because of higher specific impulse.

            EP systems fall into three major categories: (a) electrostatic propulsion, (b) electro thermal propulsion, and (c) electromagnetic propulsion. Four components are needed to make a complete electric propulsion system: a power source, a power processing unit (PPU), a propellant management system (PMS), and a control computer. The power source can be any source of electrical power, but solar and nuclear are the primary options. A solar electric propulsion system (SEP) uses sunlight and solar cells for power generation. A nuclear electric propulsion system (NEP) uses a nuclear heat source coupled to an electric generator. The PPU converts the electrical power generated by the power source into the power required by each component of the Hall thruster. It generates the high voltages required by the Hall thruster channel and the high currents required for the hollow cathode. The PMS controls the propellant flow from the propellant tank to the thruster and hollow cathode. Modern PMS units have evolved to a level of sophisticated design that no longer requires moving parts. The control computer controls and monitors system performance. The Hall thruster then processes the propellant and power to perform work. Hall thrusters use inert gas as propellant. The thrust is generated from the force that the propellant ions impart to the electron cloud inside the thruster. 

Comments

Popular posts from this blog

Cloud Computing – Research Issues, Challenges, Architecture, Platforms and Applications: A Survey

    Cloud computing is the development of parallel computing, distributed computing, grid computing and virtualization technologies which define the shape of a new era. Cloud computing is an emerging model of business computing.   I.      Introduction Cloud computing is the development of parallel computing, distributed computing grid computing, and is the combination and evolution of Virtualization, Utility computing, Software-as-a-Service (SaaS),   Infrastructure-as-a-Service   (IaaS)   and Platform-as-a-Service (PaaS) . Cloud is a metaphor to describe web as a space where computing has been pre-installed and exist as a service; data, operating systems, applications, storage and processing power exist on the web ready to be shared. To users, cloud computing is a Pay-per-Use-On-Demand mode that can conveniently access shared IT resources through the Internet. Where the IT resources include network, server, storage, application, service and so on and

Cryptowall 3.0: Back to the Basics

Talos Group - February 9, 2015 This post was authored by Andrea Allievi  & Earl Carter Ransomware continues to impact a large number of organizations and the malware continues to evolve. In January, we examined Cryptowall 2.0 and highlighted new features incorporated into the dropper and Cryptowall binary. When Cryptowall 3.0 appeared, we were interested in seeing what new functionality was incorporated into this latest variant in the Cryptowall series. The latest 3.0 sample that we analyzed was in a zip file. This zip file contains multiple dropper files which are essentially identical in functionality except for the encryption algorithm used to obfuscate the dropper and eventually build the Cryptowall 3.0 binary. Similar to the 2.0 version, the dropper is encrypted with a custom algorithm three times, but that is where the similarities end. In the 3.0 sample that we analyzed, the following dropper features (which we identified as being operational in version 2.0)